Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Braz. oral res. (Online) ; 32: e47, 2018. tab, graf
Article in English | LILACS | ID: biblio-952151

ABSTRACT

Abstract The objective of this study was to assess the effect of a UV light-based auxiliary illumination on adhesive remnant (AR) removal after orthodontic debonding. Sixty human molars were divided according to the adhesive used for bonding: O-opaque; LF-low fluorescence; and HF-high fluorescence. After debonding, the teeth were subdivided according to the AR removal method: No UV light or With UV light. After AR removal, the teeth were polished. Direct visual analysis, scanning electron microscopy (SEM) and time quantification for AR removal analyses were performed (Fisher-Freeman-Halton, Fisher's exact, chi-square trend, ANOVA, and independent t-tests; α = 5%). Concerning the adhesives, there was no significant difference among direct visual, SEM and time analyses for AR removal (p ≥ 0.05). Regarding AR removal methods, a similarity among the subgroups was verified for direct visual and SEM analyses (p≥0.05). However, a significant trend was verified for the with UV light method to produce greater marks, and the no UV light method, to produce a greater rate of samples with AR before polishing (p = 0.015). AR removal with light was significantly quicker in comparison with the no UV light method (p < 0.0001). The use of UV light may aid orthodontists in removing AR more thoroughly and in less time. However, they should receive special training to apply this technology, and should never dismiss the final polishing procedure.


Subject(s)
Humans , Orthodontic Appliances , Ultraviolet Rays , Dental Debonding/methods , Dental Cements/radiation effects , Dental Enamel/radiation effects , Reference Values , Surface Properties/radiation effects , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Dental Cements/chemistry , Dental Polishing/methods
2.
J. appl. oral sci ; 25(4): 381-386, July-Aug. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893641

ABSTRACT

Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.


Subject(s)
Dentin-Bonding Agents/radiation effects , Lasers, Semiconductor , Polymerization/radiation effects , Reference Values , Solubility/radiation effects , Surface Properties/radiation effects , Reproducibility of Results , Dentin-Bonding Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Statistics, Nonparametric , Dental Cements/radiation effects , Dental Cements/chemistry , Phase Transition/radiation effects , Light-Curing of Dental Adhesives/methods , Curing Lights, Dental , Photochemical Processes/radiation effects
3.
Braz. oral res. (Online) ; 31(supl.1): e61, Aug. 2017. graf
Article in English | LILACS | ID: biblio-889452

ABSTRACT

Abstract Contemporary dentistry literally cannot be performed without use of resin-based restorative materials. With the success of bonding resin materials to tooth structures, an even wider scope of clinical applications has arisen for these lines of products. Understanding of the basic events occurring in any dental polymerization mechanism, regardless of the mode of activating the process, will allow clinicians to both better appreciate the tremendous improvements that have been made over the years, and will also provide valuable information on differences among strategies manufacturers use to optimize product performance, as well as factors under the control of the clinician, whereby they can influence the long-term outcome of their restorative procedures.


Subject(s)
Curing Lights, Dental , Dental Cements/chemistry , Light-Curing of Dental Adhesives/instrumentation , Light-Curing of Dental Adhesives/methods , Photoinitiators, Dental/chemistry , Polymerization , Absorption, Radiation , Dental Cements/radiation effects , Dental Restoration, Permanent/instrumentation , Dental Restoration, Permanent/methods , Polymerization/radiation effects , Radiation Dosage , Temperature , Time Factors
4.
Dental press j. orthod. (Impr.) ; 22(2): 55-60, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-840225

ABSTRACT

ABSTRACT OBJECTIVE: The aim of this study was to assess in vitro the influence of the CO2 laser and of the type of ceramic bracket on the shear bond strength (SBS) to enamel. METHODS: A total of 60 enamel test surfaces were obtained from bovine incisors and randomly assigned to two groups, according to the ceramic bracket used: Allure (A); Transcend (T). Each group was divided into 2 subgroups (n = 15): L, laser (10W, 3s); C, no laser, or control. Twenty-four hours after the bonding protocol using Transbond XT, SBS was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. After debonding, the Adhesive Remnant Index (ARI) was evaluated at 10 x magnification and compared among the groups. Data were analyzed by one-way ANOVA, Tukey’s, Mann-Whitney’s and Kruskal-Wallis tests (α = 0.05). RESULTS: Mean SBS in MPa were: AL = 0.88 ± 0.84; AC = 12.22 ± 3.45; TL = 12.10 ± 5.11; TC = 17.71 ± 6.16. ARI analysis showed that 73% of the specimens presented the entire adhesive remaining on the tooth surfaces (score 3). TC group presented significantly higher SBS than the other groups. The lased specimens showed significantly lower bond strength than the non-lased groups for both tested brackets. CONCLUSION: CO2 laser irradiation decreased SBS values of the polycrystalline ceramic brackets, mainly Allure.


RESUMO OBJETIVO: o objetivo deste estudo foi avaliar in vitro a influência do laser de CO2 sobre a resistência ao cisalhamento da colagem (RCC) no esmalte dentário, usando diferentes tipos de braquetes cerâmicos. MÉTODOS: no total, 60 superfícies de esmalte de incisivos bovinos foram obtidas e aleatoriamente divididas em dois grupos, de acordo com o braquete cerâmico utilizado: Allure (A) e Transcend (T). Cada grupo foi dividido em dois subgrupos (n = 15): L, laser (10W, 3s); C, sem laser, ou controle. Vinte e quatro horas após a colagem dos braquetes com o sistema Transbond XT, foi realizado o teste de resistência ao cisalhamento, com velocidade de 0,5 mm/min, em máquina universal de ensaios mecânicos. Após a descolagem, o Índice de Remanescente de Adesivo (IRA) foi avaliado com aumento de 10X e comparado entre os grupos. Os dados foram analisados pelo ANOVA one-way, testes de Tukey’s, Mann-Whitney’s e Kruskal-Wallis (α = 0,05). RESULTADOS: as médias da RCC em MPa foram: AL = 0,88 ± 0,84; AC = 12,22 ± 3,45; TL = 12,10 ± 5,11; TC = 17,71 ± 6,16. A análise do IRA mostrou que 73% dos corpos de prova apresentaram todo o compósito remanescente aderido à superfície do esmalte (escore 3). O grupo TC apresentou valor significativamente maior de RCC do que os outros grupos. Os corpos de prova dos grupos com laser obtiveram valores adesivos significativamente menores do que os corpos de prova dos grupos sem laser, com ambos os tipos de braquetes. CONCLUSÃO: a irradiação com laser de CO2 diminuiu os valores de RCC dos braquetes policristalinos testados, principalmente do Allure.


Subject(s)
Animals , Ceramics/radiation effects , Dental Bonding , Orthodontic Brackets , Dental Cements/radiation effects , Shear Strength/radiation effects , Lasers, Gas/adverse effects , Stress, Mechanical , Acid Etching, Dental , Materials Testing , Cattle , Resin Cements/radiation effects , Dental Enamel , Dental Stress Analysis , Incisor
5.
J. appl. oral sci ; 20(5): 556-562, Sept.-Oct. 2012. ilus, tab
Article in English | LILACS | ID: lil-654921

ABSTRACT

OBJECTIVES: To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100®, 3M-eSPe and Panavia F 2.0®, Kuraray) used for cementing fiberreinforced resin posts (Fibrekor® - Jeneric Pentron) under three different curing protocols and two water storage times. MATERIAL AND METHODS: Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. RESULTS: Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. CONCLUSIONS: The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent.


Subject(s)
Animals , Cattle , Curing Lights, Dental , Dental Cements/chemistry , Post and Core Technique , Resin Cements/chemistry , Water/chemistry , Dental Cements/radiation effects , Hardness Tests , Materials Testing , Polymerization , Resin Cements/radiation effects , Surface Properties , Time Factors
6.
Braz. dent. j ; 21(5): 432-438, 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-568989

ABSTRACT

The aim of this study was to assess polymerization ability of three light-curing units by evaluating the influence of the light source, curing regimen and permeant (water or ethanol) on sorption, solubility and amount of residual monomers of a dental adhesive. Specimens of Adper Single Bond 2 were fabricated using a stainless steel circular matrix (8 mm x 1 mm). One quartz-tungsten-halogen (QTH) lamp and two light-emitting diode (LED) device at three different curing regimes (L1 = 12 J; L2 = 24 J; L3 = 24 J) were used to cure the specimens. Specimens were stored in two types of permeants - deionized water or 75 percent ethanol - for two storage times (G1 =7 days; G2 = 30 days). The specimens underwent water sorption and solubility tests, according to ISO 4049:2000 standard. After storage, residual monomers were identified and quantified by high performance liquid chromatography (HPLC). For sorption, L1 showed the highest values and QTH, the lowest. For solubility, in ethanol-stored groups, L1 had also the highest values, and QTH, the lowest, and findings were significantly different from the other curing regimens. L1 leached significantly more monomers than the others, and QTH had the lowest results. In conclusion, the type of light source, the curing regimen and the permeant affected sorption, solubility and amount of residual monomers of the adhesive under study.


O objetivo deste estudo foi avaliar a capacidade de polimerização de três unidades fotopolimerizadoras por meio da análise da influência das fontes de luz, regimes de cura (QTH, L1, L2 e L3) e diferentes permeantes (água e etanol) na sorção, solubilidade e quantidade de monômeros residuais de um adesivo dentário. Espécimes de AdperTM Single Bond 2 foram feitos utilizando uma matriz circular de aço inoxidável (8 mm x 1 mm). Três fontes de luz, uma a base de luz halógena (QTH) e duas a base de diodos emissores de luz (LED), em três diferentes regimes de cura (L1 = 12J; L2 = 24J; L3 = 24J) foram usados para fotoativar os espécimes. Os espécimes foram armazenados em dois tipos de permeantes (água deionizada ou etanol a 75 por cento), por dois diferentes períodos de armazenamento (G1 =7 dias; G2 = 30 dias). Os espécimes foram submetidos a testes de sorção e solubilidade de acordo com a ISO 4049:2000. Após o período de armazenamento, os monômeros residuais foram identificados e quantificados por cromatografia líquida de alta eficiência (HPLC). Para sorção, L1 apresentou os maiores valores significantes e QTH os menores. Para solubilidade, nos grupos do etanol, L1 apresentou os maiores valores e QTH os menores e os achados foram estatisticamente diferentes dos outros regimes de cura. L1 extraiu significantemente mais monômeros do que os outros regimes e QTH teve os menores resultados. As fontes de luz, os regimes de polimerização e os diferentes permeantes influenciaram na sorção, solubilidade e quantidade de monômeros residuais extraídos do adesivo em estudo.


Subject(s)
Humans , Curing Lights, Dental/classification , Dental Cements/chemistry , Absorption , Adsorption , Bisphenol A-Glycidyl Methacrylate/chemistry , Chromatography, High Pressure Liquid , Dental Cements/radiation effects , Ethanol/chemistry , Materials Testing , Methacrylates/chemistry , Polymerization , Solubility , Solvents/chemistry , Temperature , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL